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As the world's most energy-consuming and carbon-emitting country, China faces enormous pressures on energy
conservation and emission reduction, and improving energy efficiency is one of themost important ways to save
energy and reduce emissions. Using the city-level panel data in China during 2013–2017, we apply the global
non-radial directional distance function (NDDF) to estimate the global unified efficiency (GUE) of each city as
well as their driving forces, and identify the change of efficiency performance. The results indicate that the aver-
age GUE changed−1.0%, 1.2%, 6.0% and 7.0% during 2013–2014, 2014–2015, 2015–2016 and 2016–2017, respec-
tively. The more developed Central China and the relatively underdeveloped Northwest China have high GUE,
while the lower GUE exists in the Northeast and North China regions with greater industrial transformation
and upgrading pressures. In general, the global unified efficiency of each region increases over time.

© 2019 Elsevier B.V. All rights reserved.
1. Introduction

Since the beginning of the 21st century, China's energy consumption
has grown rapidly and surpassed the United States in 2009, making
China the most energy-consuming country in the world (Liu et al.,
g@staff.shu.edu.cn (S. Lu),
2018). China's primary energy consumption in 2018 was about
3273.5 million tons of standard oil (Mtoe), accounting for 23.6% of the
world's total energy consumption (Fig. 1). With the urbanization and
industrialization, China's energy consumption will continue to grow in
the future (Lu and Li, 2019; Mi et al., 2018).

Due to the huge energy consumption, China's energy issues and the
related environmental issues have once become one of the most con-
cerned research areas. On one hand, energy consumption provides sup-
port for the rapid development of China's economy (Shahbaz et al.,
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Fig. 1. Primary energy consumption in China, US, and the world (Mtoe).
Source: BP statistical review of the world 2019.
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2013), on the other hand, pollutant emissions from huge energy con-
sumption and coal-based energy structure have also caused serious en-
vironmental problems (Lin and Zhu, 2018). In particular, the national
haze since 2013 has aroused public concern about the environmental is-
sues and resource constraints. It is becoming a consensus that the previ-
ous extensive model has been unable to meet the requirements of
sustainable development (Zhang et al., 2011).

Energy is one of the most important foundations indispensable for
economic and social development, and the misuse of energy will bring
a series of environmental problems. Since energy is essential and cannot
be overused, improving energy efficiency has become an inevitable
choice for energy saving and emission reduction (Zhang and Lin, 2018).

Energy efficiency can be divided into single factor efficiency and
total factor efficiency. Single factor energy efficiency, also called energy
intensity, is defined as the ratio of energy consumption and total output.
As the simple data acquisition and the straightforward results, energy
intensity is often used as one of policy target indicators (Cornillie and
Fankhauser, 2004; Fisher-Vanden et al., 2004). In December 2016, the
National Development and Reform Commission and the National En-
ergy Administration proposed in the “13th Five-Year Plan for Energy
Development” that by 2020, the development goal of reducing energy
intensity by 15% comparedwith 2015will be achieved. Research on sin-
gle factor energy efficiency is generally based on factor decomposition
of energy efficiency indicators through appropriate methods (Karimu
et al., 2017; Li and Tao, 2017; Ma et al., 2019).

Total factor energy efficiency is generally defined as the proportion
of target energy consumption to actual energy consumption, which
can be used to measure the energy-economic efficiency and energy-
technology efficiency. Target energy consumption refers to the optimal
and feasible energy input, that is, theminimumenergy input that can be
achieved under specific production conditions. Total factor energy effi-
ciency refers to the utilization efficiency of energy in the production
process together with other input factors such as capital, labor, rawma-
terials, etc. Data Envelopment Analysis (DEA) or Stochastic Frontier Ap-
proach (SFA) can be used tomeasure the total factor energy efficiency of
different industries or regions (Beltrán-Esteve et al., 2019; Llorca et al.,
2017; Sun et al., 2019; Wu et al., 2017).

Although the evaluation of energy intensity is simple and specific, it
cannot take into account the substitution between energy and other
input factors. The benefit of total factor energy efficiency is to facilitate
the evaluation and comparison of efficiency performance across indus-
tries or regions (Mardani et al., 2017). Since total factor energy effi-
ciency is derived from the microeconomic theory of total factor
productivity, it can not only accurately consider the substitution be-
tween input factors, but also reflect the overall utilization efficiency
under a certain production technology. As a linear programming
method for non-parametric estimation, the biggest advantage of DEA
is that it does not need to assume the specific production functional
form of the frontier of technology when compared with SFA (Du and
Lin, 2017).

Färe et al. (2004) and Färe et al. (2005) emphasized the importance
of dividing output variables into desirable outputs and undesired out-
puts, thus the environmental efficiency can be assessed with DEA
method. Zhou and Ang (2008) first divided input variables into energy
inputs and non-energy inputs in order tomeasure the energy efficiency.
By applying bootstrap to modify the values based on DEA, Song et al.
(2013) analyzed the energy efficiency of BRICS. Sueyoshi and Goto
(2011) combine input variable separation with output variable separa-
tion to unify all types of efficiency, including operational efficiency, en-
ergy efficiency, and environmental efficiency, as “unified efficiency”.
Unified efficiency can be defined as the average efficiency of each
input-output variable, not only to measure the efficiency of the use of
individual input and output variables, but also to measure the compre-
hensive utilization efficiency between variables. As unified efficiency
can be applied under the framework of the total factor energy efficiency,
so it is also called total factor unified energy efficiency.

From the perspective of methodology, Mahlberg and Sahoo (2011)
proposed a non-radial direction distance function (NDDF) method to
simulate the efficiency of energy and carbon dioxide emissions. On
this basis, Zhang et al. (2014) proposed a common frontier NDDF ap-
proach to measure energy efficiency and technology gaps in the
power generation industry, and analyze the impact specific policies on
the efficiency of China's fossil fuel power generation. Since NDDF has
overcome some of the shortcomings of traditional directional distance
functions (DDF), it has been widely used, for example, Wang et al.
(2017) estimated the efficiency of China's manufacturing industries
with the NDDF method.

In total factor energy efficiency analysis, it is important factors to de-
fine the production technology frontier. For the results comparison be-
tween various years, Lin and Du (2015) extended the NDDF to global
NDDF by the global DEA method which is proposed by Oh (2010), and
evaluated the environmental (energy and carbon) efficiency by com-
bining the environmental (energy and carbon) efficiency estimation
model in Zhang et al. (2014) and the global DEA method.

Compared with previous studies, we contribute to the existing liter-
ature in several ways: On the one hand, previous studies have mostly
considered carbon dioxide as an undesirable output, so as to explore
the energy-carbon efficiency of various regions (Ramanathan, 2006;
Yao et al., 2016; Zhang and Lin, 2018). In contrast, this article considers
the emissions of sulfur dioxide, wastewater, and dust as undesired



Fig. 2. Illustration of radial and non-radial directional distance functions.
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outputs, and explores energy-environmental efficiency. On the other
hand, existing studies on China mostly use provincial panel data
(Chen and Jia, 2017; Fan et al., 2017). However, as China's provinces
may contain dozens of cities, and there is a large gap in the development
and efficiency between these cities. Therefore, regional characteristics
of energy-environment efficiency may not be accurately described by
provincial panel data. In view of this, this paper tries to collect and col-
lates China's city-level panel data, estimate the energy-environmental
efficiency of various regions, and analyze the possible influencing
factors.

The other parts of this paper are organized as follows. Section 2 is
methodology, introducing themethod of non-radial directional distance
function (NDDF) based on global production technology used in this
paper. Section 3 introduces the dataset used in this article and its
sources. Section 4 is the result of the empirical analysis and the corre-
sponding discussions. Section 5 concludes and puts forward some re-
lated policy implications.
2. Methods

Suppose that there are M cities and each city uses capital (K), labor
(L), and Energy (E) as inputs to generate the value added (Y) and pollut-
ants emissions (P). Y and P are the desirable output and undesirable
output. Themulti-output production technology can bedescribed as fol-
lows:

Tech ¼ K; L; E;Y ; Pð Þ : K; L; Eð Þ can produce Y; Pð Þf g ð1Þ

where Tech is often assumed to satisfy the standard axioms of produc-
tion theory. For instance, inactivity is always possible, and finite
amounts of inputs can only produce finite amounts of outputs. In addi-
tion, inputs and desirable output are often assumed to be strongly dis-
posable, thus, the weak-disposability and null-jointness assumption
should be imposed on Tech, which can be expressed as follows:

a. If (K,L,E,Y,P) ∈ Tech and 0 ≤ θ ≤ 1, then (K,L,E,θY,θP) ∈ Tech
b. If (K,L,E,Y,P) ∈ Tech and P = 0, then Y = 0

Further, the weak-disposability means that pollutant emission re-
duction is costly, which is accompanied by the decrease in desired out-
put and the null-jointness assumption means that pollutant emissions
along with development are inevitable.

Once the environmental production technology Tech is specified, the
parametric translog/quadratic function or the nonparametric DEA
method can be used to specify the production technology. It also mat-
ters that whether the environmental production technology should be
assumed as variable or constant returns to scale. As pointed out by
Picazo-Tadeo et al. (2011) and Picazo-Tadeo et al. (2012), the assump-
tion of constant results to scale in environmental efficiency analysis
has the advantages that it can reflect the ration of output to environ-
mental pressure more directly, and it's difficult to consider variable
returns to scale inmeasures of environmental efficiency based on direc-
tional distance functions. At the same time, the assumption of constant
return to scale is closely related to the weak-disposability property
mentioned above.1 Thus, the environmental production technology
Tech for M cities exhibiting constant returns to scale can be expressed
1 Here we just provide a brief review on the assumption of our methodology. There are
already several excellent reviews of related discussions in eco-efficiency analysis, see, for
example, Picazo-Tadeo et al. (2011) and Picazo-Tadeo et al. (2012).
as follows:

Tech ¼
K; L; E;Y ; Pð Þ :

XM
m¼1

zmKm≤K;
XM
m¼1

zmLm≤L;

XM
m¼1

zmEm ≤E;
XM
m¼1

zmYm≥Y ;
XM
m¼1

zmPm ¼ P; zm ≥0;m ¼ 1;2;⋯;M

8>>>><
>>>>:

9>>>>=
>>>>;

ð2Þ

Chung et al. (1997) firstly used theDDF to examine the environmen-
tal efficiency. In general, DDF can achieve such a goal thatmaximizes de-
sirable outputs while reducing undesirable outputs simultaneously:

DDF
��!

K; L; E;Y ; P; dð Þ ¼ sup β : K; L; E;Y ; Pð Þ þ d� βð Þ∈Techf g ð3Þ

Picazo-Tadeo and Prior (2009) pointed out that traditional efficiency
measurement based on Färe et al. (1989) might fail when the biggest
desired output producer is not the biggest polluter. As is shown in
Fig. 2, the OABCDE area is the output set defined by Eq. (2). When a
decision-making unit at point D moves along the DC direction, there
will be an increase in desirable output accompanied by a decrease in un-
desired output. At the same time, the conventional DDF may overesti-
mate efficiency, and non-radial efficiency measures are often
advocated to overcome this limitation because of their advantages
(Fukuyama and Weber, 2009; Zhang and Choi, 2013). For point K, if
the direction d is taken and the conventional DDF is used, then F is the
benchmark point for evaluating K (KB and od are parallel). But for
non-radial DDF, the benchmarking point will be B because it will pro-
duce a smaller quantity of undesirable outputs while the same amount
of desirable outputs compared with F.

Because non-radial DDF is superior to radial DDF, this paper uses
non-radial DDF to measure efficiency in various regions. Following
Zhou et al. (2012) and Zhang et al. (2014), the non-radial DDF in this
paper is defined as follows:

NDDF
���!

K; L; E;Y ; P; dð Þ
¼ sup wTβ : K; L; E; Y; Pð Þ þ d� diag βð Þð Þ∈Tech� � ð4Þ

wherewT=(wK,wL,wE,wY,wP)T refers to theweight vector of input and
output factors. β = (βK,βL,βE,βY,βP) denotes the inefficiency for each
combination of input and output, d=(−dK,−dL,−dE,dY,−dP) is the di-
rectional vector, and diag refers to diagonal matrices. The same with
Zhang et al. (2014), this paper takes both energy andnon-energy factors
as inputs becausewe need to estimate the unified efficiency considering
energy consumption under a total factor production framework. Thus, a
non-radial distance function (NDDF) can be definedwhen all inefficien-
cies for inputs and desirable and undesirable outputs are concluded into
the objective function and constraints.
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According to Tulkens and Eeckaut (1995) andOh (2010), three kinds
of production technology sets are defined as follows: contemporaneous
production technology, intertemporal production technology, and
global production technology. Contemporaneous production technol-
ogy TechRh

C indicates the production technology for a specific group Rh
in a specific period t, which is defined as: TechRh

C={(Kt,Lt,Et,Yt,Pt) : (Kt,
Kt,Lt,Et,Yt,Pt) : (Kt,Lt,Et) can produce (Yt,Pt)}, where t = 1, ⋯,
T. Intertemporal production technology TechRh

I of group Rh consists of
a single technology constructed from observations over the whole pe-
riod for group Rh, which is defined as TechRh

I = TechRh

1 ∪ TechRh

2-

∪ ⋯TechRh

T. It is assumed that the observations for one intertemporal
production technology are unable to access other intertemporal tech-
nologies if there are H different intertemporal technologies. On this
basis, global production technology TechG is defined as TechG =
TechR1

I ∪ TechR2

I ∪ ⋯TechRH

I.
It is worth noting that the global production technology envelops all

intertemporal production technologies, and it is assumed that all obser-
vations can access the global technology through innovation (Zhang
Table 1
Descriptive statistics for variables.

Region Variable Unit O

Northeast China Labor Ten thousand 16
Capital Billion yuan 16
Electricity 10 million kWh 16
GRP Billion yuan 16
Dust Thousand ton 16
So2 Thousand ton 16
Waste water Million ton 16

North China Labor Ten thousand 16
Capital Billion yuan 16
Electricity 10 million kWh 16
GRP Billion yuan 16
Dust Thousand ton 16
So2 Thousand ton 16
Waste water Million ton 16

East China Labor Ten thousand 39
Capital Billion yuan 39
Electricity 10 million kWh 39
GRP Billion yuan 39
Dust Thousand ton 39
So2 Thousand ton 39
Waste water Million ton 39

Central China Labor Ten thousand 21
Capital Billion yuan 21
Electricity 10 million kWh 21
GRP Billion yuan 21
Dust Thousand ton 21
So2 Thousand ton 21
Waste water Million ton 21

South China Labor Ten thousand 17
Capital Billion yuan 17
Electricity 10 million kWh 17
GRP Billion yuan 17
Dust Thousand ton 17
So2 Thousand ton 17
Waste water Million ton 17

Southwest China Labor Ten thousand 15
Capital Billion yuan 15
Electricity 10 million kWh 15
GRP Billion yuan 15
Dust Thousand ton 15
So2 Thousand ton 15
Waste water Million ton 15

Northwest China Labor Ten thousand 9
Capital Billion yuan 9
Electricity 10 million kWh 9
GRP Billion yuan 9
Dust Thousand ton 9
So2 Thousand ton 9
Waste water Million ton 9
and Choi, 2013). By solving the following DEA model, the global NDDF
can be computed:

TNDDF
����!

K; L; E;Y ; P;dð Þ ¼ maxwTβ
s:t:

XT
t¼1

XM
m¼1

zm;tKm;t ≤K−βKdK

XT
t¼1

XM
m¼1

zm;tLm;t ≤L−βLdL

XT
t¼1

XM
m¼1

zm;tEm;t ≤E−βEdE

XT
t¼1

XM
m¼1

zm;tYm;t ≥Y þ βYdY

XT
t¼1

XM
m¼1

zm;tPm;t ¼ P−βPdP

zm;t ≥0;m ¼ 1;2;…;M;
t ¼ 1;2;…; T;βK ;βL;βE;βY ;βP ≥0

ð5Þ
bs Mean Std. dev. Min Max

5 131.9 245.8 15.8 1730.0
5 872.7 1008.0 132.4 5816.0
5 136.0 215.6 7.8 1070.0
5 310.0 465.0 41.0 2800.0
5 92.0 257.4 4.6 3200.0
5 74.7 52.3 2.0 282.8
5 53.4 48.3 3.7 277.5
0 77.8 78.8 8.8 369.2
0 872.7 1008.0 132.4 5816.0
0 72.9 71.1 6.7 288.0
0 163.0 189.0 21.3 773.0
0 35.7 32.5 0.7 166.6
0 34.3 43.8 0.5 446.2
0 39.9 55.6 2.7 401.5
0 176.0 186.5 10.7 1350.0
0 872.7 1008.0 132.4 5816.0
0 131.2 191.8 7.0 1590.0
0 351.0 371.0 46.2 3010.0
0 34.8 29.2 1.0 154.0
0 39.6 33.4 1.3 206.7
0 98.3 94.8 4.9 669.2
0 114.7 78.8 17.5 448.3
0 872.7 1008.0 132.4 5816.0
0 73.8 83.8 9.0 469.6
0 231.0 209.0 36.6 1340.0
0 23.5 23.3 0.6 144.2
0 33.6 29.1 0.3 130.5
0 54.8 39.5 0.6 193.9
5 131.4 185.2 10.2 941.1
5 872.7 1008.0 132.4 5816.0
5 141.7 218.0 2.3 971.6
5 275.0 416.0 42.4 2250.0
5 16.8 17.8 0.0 92.3
5 22.9 21.1 0.5 112.1
5 59.2 53.5 5.1 284.0
5 131.3 263.4 15.1 1550.0
5 872.7 1008.0 132.4 5816.0
5 72.1 143.2 4.0 908.0
5 204.0 324.0 24.9 1950.0
5 21.5 29.3 1.4 214.8
5 48.0 72.5 0.8 494.4
5 41.0 56.4 0.8 355.2
0 75.1 73.5 12.9 370.3
0 872.7 1008.0 132.4 5816.0
0 56.4 82.4 1.4 446.1
0 147.0 137.0 25.2 747.0
0 26.4 41.5 1.2 254.0
0 37.0 42.0 2.5 200.8
0 26.9 23.3 1.4 136.9



3 Gross Regional product (GRP) is a monetary measure of the market value of all final
goods and services produced in a region or subdivision of a country in a period of time.

Table 2
Descriptive statistics for variables.

Item Labor Capital Electricity GRP

Unit 10 thousand Billion Yuan 10 million kWh Billion yuan

Average Growth rate Average Growth rate Average Growth rate Average Growth rate

Northeast China 131.94 1.14 872.65 9.64 135.99 1.39 310.18 3.96
North China 77.84 −2.02 541.34 6.73 72.90 1.77 163.00 −0.99
East China 176.01 6.05 894.64 9.28 131.25 5.38 350.82 6.99
Central China 114.70 3.71 602.05 12.83 73.76 2.80 231.19 7.21
South China 131.38 3.92 502.14 8.84 141.68 6.52 274.87 7.15
Southwest China 131.29 0.70 567.46 11.54 72.11 5.42 203.70 7.93
Northwest China 75.12 3.49 455.73 17.53 56.37 12.46 147.29 13.55

Item SO2 Dust Waste Water

Unit Thousand ton Thousand ton Million ton

Average Growth rate Average Growth rate Average Growth rate

Northeast China 74.72 −22.73 92.00 −21.85 53.43 −11.42
North China 34.25 −21.49 35.68 −8.20 39.90 −12.17
East China 39.65 −14.57 34.82 1.37 98.28 −7.01
Central China 33.60 −27.30 23.54 −5.80 54.81 −14.65
South China 22.91 −23.01 16.77 −0.03 59.24 −11.13
Southwest China 48.00 −16.63 21.50 −4.85 40.99 −9.31
Northwest China 36.95 −12.37 26.41 −10.92 26.94 −2.20

Fig. 3. Box diagram of average GUE in each region NEC, NC, EC, CC, SC, SWC and NWC
indicates Northeast China, North China, East China, Central China, South China, Southwest
China and Northwest China, respectively.
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Following Zhou et al. (2012) and Zhang et al. (2014), theweight vec-
tor is set as (1/9, 1/9, 1/9, 1/3, 1/3) and the directional vector is set as
(−K,−L,−E,Y,−P). Thus, the weights for three inputs, single desirable
output and single undesirable output are equal to each other, and the
resultingmodel can be used to estimate the degrees towhich the output
is increased and the input factors and pollutant emissions are reduced
non-proportionally. The global unified efficiency (GUE) index for each
city is defined as follows:

GUEg ¼ 1
4

K−β�
KK

� �
= Y þ β�

YY
� �

K=Y
þ L−β�

KL
� �

= Y þ β�
YY

� �
L=Y

þ E−β�
KE

� �
= Y þ β�

YY
� �

E=Y
þ P−β�

KP
� �

= Y þ β�
YY

� �
P=Y

� �

¼ 1
4

K−β�
KK

� �
=K

Y þ β�
YY

� �
=Y

þ L−β�
KL

� �
=L

Y þ β�
YY

� �
=Y

þ E−β�
KE

� �
=E

Y þ β�
YY

� �
=Y

þ P−β�
KP

� �
=P

Y þ β�
YY

� �
=Y

" #

¼ 1
4

1−β�
K

1þ β�
Y
þ 1−β�

L

1þ β�
Y
þ 1−β�

E

1þ β�
Y
þ 1−β�

P

1þ β�
Y

	 


¼ 1=4 1−β�
K

� �þ 1−β�
L

� �þ 1−β�
E

� �þ 1−β�
P

� �� �
1þ β�

Y
¼ 1−1=4 β�

K þ β�
L þ β�

E þ β�
P

� �
1þ β�

Y
ð6Þ

whereβK
∗,βL

∗,βE
∗,βP

∗, andβY
∗ are the optimal solutions of Eq. (5) based on

the global production technology TechG.
The values of GUE is between 0 and 1, and the higher the value, the

higher the efficiency. That is to say, if the GUE value of one city is
equal to 1, then this city performs the best unified efficiency which lo-
cated exactly on the technology frontier. It should be pointed out that
the GUE in this paper is defined on the global production technology,
which is constructed from all observations over the whole period for
all cities.

In order to measure changes of the GUE on global production tech-
nology for period between t and t + 1, the metafrontier Malmquist–
Luenberger index of GUEMGUE is defined as follows:

MGUE ¼ GUEtþ1
g

GUEtg
ð7Þ

MGUE can reflect the unified efficiency change. According to Zhang
and Choi (2013), MGUE can be decomposed into various components,
including efficiency change, technical change and technical leadership
change.2
2 See Zhang and Choi (2013) for details of decomposition process.
3. Data

The input factors used in this paper include labor, capital and elec-
tricity consumption. Desirable output for each city is GRP3 and unde-
sired outputs include sulfur dioxide, wastewater, and dust. All the
input and output variables are city-level.

(Beltrán-Esteve et al., 2019) Labor. The number of employee is used
to indicate labor input in each city, which contains persons employed in
the urban units at year-end, and persons employed in private enter-
prises and self-employed individuals in urban areas. These data are
from the China City Statistical Yearbook.

(Chen and Jia, 2017) Capital. Perpetual Inventory Method proposed
by Goldsmith (1951) is used in this paper to estimate the capital stock
For further details see: https://unstats.un.org/unsd/economic_stat/China/background_pa-
per_on_GRP.pdf

https://unstats.un.org/unsd/economic_stat//background_paper_on_GRP.pdf
https://unstats.un.org/unsd/economic_stat//background_paper_on_GRP.pdf


Fig. 4. Kdensity of average GUE in each region. NEC, NC, EC, CC, SC, SWC and NWC indicates Northeast China, North China, East China, Central China, South China, Southwest China and
Northwest China, respectively.
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of each city, which can be expressed as follows:

Kt ¼ It þ 1−δtð Þ � Kt−1 ð8Þ

where Kt represents the capital stock in year t, It represents the newly
added investment in year t, and δt represents the depreciation rate.
The newly added investment and the depreciate rate can be obtained
as follows:

It ¼ FOt−FOt−1 ð9Þ

δt ¼ FOt−FNtð Þ− FOt−1−FNt−1ð Þ
FOt−1

ð10Þ

where FOt and FNt represent the original value and the net value of fixed
assets in year t, respectively. FOt and FNt are from the city-level and
province-level China Statistical yearbook, the capital stock in the prime
year is the net value of fixed asset in 2005. All the asset values are con-
verted into constant price in 2005 according to the price index of fixed
asset investment.

(Cornillie and Fankhauser, 2004) Electricity consumption. Data of
energy consumption at city level are unavailable. Since energy con-
sumption and electricity consumption are highly correlated in most re-
gions, energy input of each city is represents by the electricity
consumption following by Lin and Zhu (2018),4 which is available
from the China City Statistical Yearbook.

(Du and Lin, 2017) Desired ouputs. Desired output of each city in this
paper is represented by its GRP. GRP of each city in nominal prices can
be obtained from the China City Statistical Yearbook. With the help of
producer price index provided by the National Statistical Bureau, we
can get the GRP at constant price.

(Fan et al., 2017) Undesired outputs. Undesirable outputs include
sulfur dioxide emission, waste water emission and dust emission of
each city, which can be obtained from the China City Statistical Yearbook.

The sample interval studied in this paper is 2013–2017. For the con-
venience of comparison, cities are divided into seven regions based on
their geographical locations according to Liu and Lin (2019): Northeast
China (NEC), North China (NC), East China (EC), Central China (CC),
4 The electricity consumption of each city in 2018 has been converted into electricity
consumption in the municipal district, in order to be consistent with data of 2013–2017.
South China (SC), Southwest China (SWC) and Northwest China
(NWC). Northeast China includes Liaoning, Jilin and Heilongjiang;
North China includes Hebei, Shanxi, InnerMongolia, Beijing and Tianjin;
East China includes Shandong, Jiangsu, Anhui, Zhejiang, Fujian, Jiangxi
and Shanghai; Central China includes Henan, Hubei and Hunan; South
China includes Guangdong, Guangxi and Hainan; Southwest China in-
cludes Yunnan, Guizhou, Sichuan and Tibet; Northwest China includes
Xinjiang, Shaanxi, Ningxia, Qinghai and Gansu. The statistic description
can be seen in Table 1.

Due to the large differences in economic aggregates and industrial
structures between various regions, input factors and the growth rates
in different regions are significantly different (Table 2). That is, produc-
tion technologies markedly different in different regions. Ignoring re-
gional technology differences will lead to erroneous results (Yao et al.,
2016). From this perspective, it is necessary to divide 269 sample cities
into different regions for analysis. Despite this, it is assumed that the
global production technology envelops all intertemporal and intergroup
production technologies, and all DMUs can access the global technology
through innovation.

4. Results and discussions

The estimation results of GUE indicate that there is a big difference in
the global unified efficiency between various regions in China (Fig. 3). In
all seven regions, the highest average GUE appeared in Central China,
Northwest China and East China. The average GUE in South China and
Southwest China are at a medium level, while North China and North-
east China have the lowest average GUE.

The above unified efficiency is consistent with our intuitive experi-
ence. The northeast region is China's traditional heavy industry base.
High energy consumption pollution are a typical characteristics of en-
ergy and resource-intensive heavy industries (Lin and Liu, 2017). The
industrial structure dominated by heavy industry in the Northeast has
caused high energy consumption and high emissions in this region. It
can also be seen from Table 2 that the energy consumption in the
North China is similar to that in the Central China and South China,
but its SO2 and dust emissions are much higher than the other two re-
gions. North China is also one of the lowest areas of GUE. That is partly
because North China is one of the largest coal-producing and coal-
consuming area in China. Due to its serious environmental issues, it is



Table 3
Statistical description ofMGUE.

Region Obs Mean Std. dev. Min Max

Northeast China 132 1.018 0.156 0.486 1.531
North China 128 0.983 0.154 0.553 1.492
East China 312 1.027 0.130 0.626 1.843
Central China 168 1.051 0.113 0.77 1.455
South China 140 1.062 0.193 0.666 2.45
Southwest China 124 1.063 0.218 0.611 2.418
Northwest China 72 1.020 0.225 0.51 2.159
National average 1076 1.033 0.164 0.486 2.450

Table 4
MGUE of each region during 2013–2017.

Region 2013–2014 2014–2015 2015–2016 2016–2017

Northeast China 0.964 1.025 1.084 0.999
North China 0.864 0.994 0.994 1.078
East China 1.009 0.989 1.060 1.050
Central China 1.002 1.022 1.112 1.069
South China 1.070 1.019 1.069 1.092
Southwest China 1.032 1.055 1.044 1.092
Northwest China 0.924 1.004 1.016 1.136
National average 0.990 1.012 1.060 1.070
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also a key area for pollution prevention and control. Tangshan, a city
with the most concentrated iron and steel industry in China which lo-
cates in Hebei Province, is a typical representative. According to the Na-
tional Bureau of Statistics, the steel production capacity of Tangshan
accounts for 55% of Hebei Province and 13% of the whole country. At
the same time, Tangshan is also one of the most polluted cities in
China, so the GUE of Tangshan is relatively low.

From the perspective of GUE, Central China and Northwest China are
the regions with the best unified efficiency performance in China, but
the impact mechanisms of GUE in these two regions may be different.
For Central China, as oneof themost developed regions in China, Central
China region has high unified efficiency. Since the industrial structure is
dominated by the tertiary industry, the energy intensity and pollutant
emission levels in Central China are lower than those in other regions
dominated by the secondary industry. For Northwest China, although
Fig. 5. Box diagrams of average GUE in each region during 2013–2017. NEC, NC, EC, CC, SC, SWC
Southwest China and Northwest China, respectively.
the Northwest China has the largest area, input factors including labor,
capital and energy, together with pollutant emissions in this region
are relatively low. In general, the more developed Central China and
the relatively underdeveloped Northwest China have high GUE, while
the lower GUE exists in the Northeast and North China regions with
greater industrial transformation and upgrading pressures. Northeast
and North China are regions where China's heavy industry and re-
sources are relatively concentrated. To some extent, this reflects a “re-
source curse” on efficiency. The average GUE in each region can also
be reflected by the kernel density (kdensity) in Fig. 4.

In order to examine the change of unified efficiency, we also calcu-
late theMGUE of each city. As is shown in Table 3, theMGUE of National
average and all regions except North China are N1, indicating that the
unified efficiency is constantly improving during 2013–2017. The aver-
age MGUE of North China during this period is b1, indicating that the
unified efficiency has decreased.

In order to better explain the change inGUE, theDGUE of each region
has been shown in Table 4. GUEs in East China, Central China, South
China and Southwest China were increasing (DGUE N 1), and the GUEs
in Northwest China were increasing during 2015–2017. The perfor-
mances of North China and Northeast China in DGUE were relatively
poor, which indicates that the unified efficiency of these two regions
were relatively low, and the improvement over these years was not ob-
vious. The national average of DGUE was b1 during 2013–2014, and
larger than 1 in the rest of these years, indicating that the national
GUE was improving over time. Similar conclusions can also be obtained
from the box diagrams in Fig. 5.

The estimation of GUE depends on the type and emissions of unde-
sired outputs in the model. In the previous GUE estimation process,
SO2, wastewater and dust are jointly selected as undesired outputs.
Therefore, it is possible to measure the overall efficiency of each city
when considering the above three pollutant emissions. Next, we mea-
sure the efficiency for specific pollutants of each city by separately
treating each pollutant as an undesired output. GUE_dust, GUE_SO2
and GUE_WW represent the global unified efficiency when dust, SO2
and waste water emission are selected as undesired outputs, respec-
tively. As is shown in Table 5 and Fig. 6, estimations results are similar.
The efficiency in North China and Northeast China were relatively low,
while those in Central China, South China and Northwest China were
relatively high.
and NWC indicates Northeast China, North China, East China, Central China, South China,



Table 5
Average GUE considering different undesired outputs.

Region Items Obs Mean Std. dev. Min Max

Central China GUE_dust 210 0.538 0.151 0.272 1.000
GUE_SO2 210 0.512 0.137 0.291 1.000
GUE_WW 210 0.473 0.119 0.310 1.000

East China GUE_dust 390 0.510 0.122 0.227 1.000
GUE_SO2 390 0.498 0.117 0.233 1.000
GUE_WW 390 0.424 0.086 0.280 0.728

North China GUE_dust 160 0.414 0.165 0.179 1.000
GUE_SO2 160 0.419 0.157 0.193 1.000
GUE_WW 160 0.432 0.163 0.239 1.000

Northeast China GUE_dust 165 0.464 0.158 0.160 1.000
GUE_SO2 165 0.467 0.155 0.169 1.000
GUE_WW 165 0.428 0.127 0.240 1.000

Northwest China GUE_dust 90 0.505 0.165 0.232 1.000
GUE_SO2 90 0.476 0.149 0.252 1.000
GUE_WW 90 0.490 0.130 0.299 1.000

South China GUE_dust 175 0.530 0.179 0.254 1.000
GUE_SO2 175 0.512 0.166 0.238 1.000
GUE_WW 175 0.482 0.161 0.234 1.000

Southwest China GUE_dust 155 0.512 0.146 0.268 1.000
GUE_SO2 155 0.482 0.125 0.260 1.000
GUE_WW 155 0.485 0.135 0.304 1.000

Table 6
Average MGUE considering different undesired outputs.

Region Items Obs Mean Std. dev. Min Max

Central China MGUE_Dust 168 1.023 0.123 0.630 1.582
MGUE_SO2 168 1.065 0.144 0.672 1.622
MGUE_WW 168 1.029 0.151 0.793 1.73

East China MGUE_Dust 312 1.024 0.124 0.608 1.803
MGUE_SO2 312 1.034 0.148 0.499 1.982
MGUE_WW 312 1.009 0.113 0.688 1.629

North China MGUE_Dust 128 0.989 0.138 0.600 1.403
MGUE_SO2 128 0.978 0.160 0.509 1.517
MGUE_WW 128 1.015 0.198 0.636 1.817

Northeast China MGUE_Dust 132 0.993 0.146 0.576 1.420
MGUE_SO2 132 1.014 0.153 0.570 1.508
MGUE_WW 132 1.007 0.169 0.573 1.765

Northwest China MGUE_Dust 72 1.002 0.150 0.534 1.442
MGUE_SO2 72 0.998 0.158 0.509 1.563
MGUE_WW 72 1.020 0.179 0.621 1.880

South China MGUE_Dust 140 1.037 0.151 0.637 1.860
MGUE_SO2 140 1.060 0.150 0.622 1.973
MGUE_WW 140 1.039 0.140 0.731 1.930

Southwest China MGUE_Dust 124 1.040 0.198 0.627 2.682
MGUE_SO2 124 1.058 0.225 0.525 3.046
MGUE_WW 124 1.044 0.177 0.680 1.723
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In view of the GUE average of 2013–2017, GUE_dust in Central China
was the highest, GUE_SO2 was the highest in Central China and South
China, and GUE_WW was the highest in Northwest China. GUE_dust
and GUE_SO2 is the lowest in North China, and GUE_WW is the lowest
in Northeast China.

Estimation results of averageMGUE considering different undesired
outputs are shown in Table 6.MGUE indicates the improvement or deg-
radation of the unified efficiency in the corresponding area.MGUEs con-
sidering all three pollutant emissions in Central China, East China, South
China and Southwest China were N1, indicating that the unified effi-
ciency in these regions were improving during 2013–2017. MGUE of
dust and SO2 in North China, MGUE of dust in Northeast China, and
MGUE of SO2 in Northwest China were b1, indicating that the corre-
sponding efficiency performance in these regions had been deterio-
rated. In general, MGUE considering individual and integrated
pollutant emissions were roughly the same.
Fig. 6. Box diagrams of averageGUE considering r different undesired outputs. |NEC, NC, EC, CC,
China, Southwest China and Northwest China, respectively.
5. Conclusions and policy implications

Using the non-radial directional distance function (NDDF) method,
we estimated China's global unified efficiency index (GUE) with a city-
level dataset. The estimation results of GUE indicate that the energy-
environmental efficiency of Central, Northwest and East China are rela-
tively high, while that of North and Northeast China are relatively low.
The results of metafrontier Malmquist–Luenberger index MGUE show
that the efficiency in most regions increases over time. Simultaneously,
in areas with higher GUE, MGUE is also relatively high and N1, while in
areas with lower GUE, MGUE is lower and more likely to be b1.

North China and Northeast China are the regions with high indus-
trial transformation and upgrading pressure, which are also facing
greater pressure on energy efficiency improvement and environmental
protection. Although lots of plans have been introduced by the govern-
ments, such as Air Pollution Control Plan, and the Transformation and
Upgrading of Resource-based Cities, the effect is still not obvious. In
SC, SWC and NWC indicates Northeast China, North China, East China, Central China, South
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fact, the experience of Central China has shown that the transformation
of industrial structure and the improvement of unified efficiency is com-
plementary. As previously analyzed, the reason why GUE is relatively
high in Central China is due to its relatively developed economy and
its industrial structure dominated by the tertiary industry.

Although the results of GUE under various pollutants are similar,
there are still some differences. For example, GUE corresponding to
waste water (GUE_WW) in North China is relatively better, when com-
pared with the GUE corresponding to SO2 and dust (GUE_SO2 and
GUE_Dust) in this area. The same is true for MGUE of North China
(GUE_WW N 1, while GUE_SO2 and GUE_Dus b 1). This is related to the
energy consumption structure of North China, which is dominated by
coal. Coal is the main source of sulfur dioxide and dust emissions, but
the impact on waste water is relatively small. This requires us to take
targeted measures in accordance with the characteristics of each region
in the process of environmental governance.
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